Home GADGETS Nvidia Blackwell and GeForce RTX 50-Series GPUs: Rumors, specifications, release dates, pricing,...

Nvidia Blackwell and GeForce RTX 50-Series GPUs: Rumors, specifications, release dates, pricing, and everything we know (updated)

Nvidia Blackwell and GeForce RTX 50-Series GPUs: Rumors, specifications, release dates, pricing, and everything we know (updated)

The next-generation Nvidia Blackwell GPU architecture and RTX 50-series GPUs are coming, right on schedule. While Nvidia hasn’t officially provided any timeframe for when the consumer parts will be announced, there have been plenty of rumors and supposed leaks of data. We spoke with some people earlier this year, and the expectation was that we’d see at least the RTX 5090 and RTX 5080 by the time the holiday season kicks off in October or November, but more recent rumors plus the delay of Blackwell B200 may have pushed things back. Whenever they launch, we expect the Blackwell GPUs will join the ranks of the best graphics cards.

Nvidia provided many of the core details for its data center Blackwell B200 GPU. While the AI and data center variants will inevitably differ from consumer parts, there are some shared aspects between past consumer and data center Nvidia GPUs, and we expect that to continue. That means that we at least have some good indications of certain aspects of the future RTX 50-series GPUs.

There are still a lot of unknowns, with leaks that appear more like people throwing darts at the wall instead of having actual inside information. We’ll cover the main rumors along with other details, including the release date, potential specifications, and other technology. Over the coming months, we can expect additional details to come out, and we’ll be updating this article as information becomes available. Here’s everything we know about Nvidia Blackwell and the RTX 50-series GPUs.

Blackwell and RTX 50-series Release Dates

Of all the unknowns, the release date — at least for the first Blackwell GPUs — may be the easiest to pin down. Based on what we’ve personally heard, the RTX 50-series could launch by the end of the year, meaning the fall of 2024. Nvidia tends to be good on timing new GPU releases, and getting the top RTX 5090 and 5080 out before the November and December holiday shopping period makes the most sense.

There’s plenty of historical precedent here as well. The Ada Lovelace RTX 40-series GPUs first appeared in October 2022. The Ampere RTX 30-series GPUs first appeared in September 2020. Prior to that, RTX 20-series launched two years earlier in September 2018, and the GTX 10-series was in May/June 2016, with the GTX 900-series arriving in September 2014. That’s a full decade of new Nvidia GPU architectures arriving approximately every two years, and we see no reason for Nvidia to change tactics now.

It’s not just about the two-year consumer GPU cadence, either. Nvidia first revealed core details of the Hopper H100 architecture in March 2022 at its annual GPU Technology Conference (GTC), with Ada Lovelace arriving in October 2024. And in May 2020, it first revealed its Ampere A100 architecture, followed by the consumer variants a few months later. The same thing happened in 2018 as well, with Volta V100 and Turing, and in 2016 there was the Tesla P100 and Pascal. So, in the past four generations, we’ve learned first about the data center and AI GPUs, with the consumer GPUs revealed and launched later in the same year. Now that Nvidia has revealed the Blackwell B200 architecture, again at GTC, and it’s a reasonably safe bet we’ll hear about the consumer variants this fall.

Except Blackwell B200 has been pushed back into 2025, according to the latest news. With that change, it’s entirely possible everything else has been pushed back as well. Renowned leaker kopite7kimi thinks consumer cards will be announced at CES 2025 in January. That would be a delay compared to earlier expectations as well as historical precedent, and Nvidia has never launched a new GPU architecture at CES as far as we can recall. However, with little competition for the RTX 4090 right now and a bigger push to get the data center parts out the door, a late 2024 launch certainly isn’t set in stone.

Another factor continues to be AI workloads, and we could see professional cards using the same GPUs as the consumer models arrive first. Nvidia’s current RTX Ada Generation professional GPUs typically cost three to four times as much as consumer cards using the same chips, with double the memory. It’s not difficult to imagine a scenario where Nvidia opts to prioritize AI and data center models over consumer cards, consider the R&D costs associated with creating a new architecture.

We don’t know the exact names or models Nvidia plans for the next generation Blackwell parts. We’re confident we’ll have RTX 5090, RTX 5080, RTX 5070, and RTX 5060 cards, and probably some combination of Ti and/or Super variants. Some of those variants will undoubtedly come out during a mid-cycle refresh about one year after the initial salvo. We’re also curious about whether or not Nvidia will have an RTX 5050 GPU — it skipped that level on desktops with the 40-series and 20-series, though the latter had the GTX 1660 and 1650 class GPUs.

Given the past patterns, we expect the top-tier RTX 5090 and 5080 to arrive first, either late this year or in early 2025. Then we’ll see a 5070-class card (maybe with a Ti or Super suffix), followed by the 5060-class about six months after the first GPUs. Whenever the first Blackwell GPUs arrive, we can expect to see the typical staggered release schedule.

TSMC 4NP, refined 4nm Nvidia

Nvidia’s B200 chips will use TSMC 4NP (Image credit: Nvidia)

One of the surprising announcements at GTC 2024 was that Blackwell B200 will use the TSMC 4NP node — “4nm Nvidia Performance,” or basically a tuned/tweaked variation of the N4P node. While it’s certainly true that process names have largely become detached from physical characteristics, many expected Nvidia to move to a refined variant of TSMC’s cutting-edge N3 process technology. Instead, it opted for a refinement of the existing 4N node that has already been used with Hopper and Ada Lovelace GPUs for the past two years.

Going this route certainly offers some cost savings, though TSMC doesn’t disclose the contract pricing agreements with its various partners. Blackwell B200 also uses a dual-chip solution, with the two identical chips linked via a 10 TB/s NV-HBI (Nvidia High Bandwidth Interface) connection. Perhaps Nvidia just didn’t think it needed to move to a 3nm-class node for this generation.

And yet, that opens the door for AMD and even Intel to potentially shift to a newer and more advanced process node, cramming more efficient transistors into a smaller chip. Nvidia took a similar approach with the RTX 30-series, using a less expensive Samsung 8N process instead of the newer and better TSMC N7. It will be interesting to see if this has any major impact on how the various next-generation GPUs stack up.

Of course, it’s also possible that Blackwell B200 variants will use TSMC 4NP while consumer chips use a different node. Much of that depends on how much of the core architecture gets shared between the data center and consumer variants and whether Nvidia thinks it’s beneficial to diversify. There’s precedent here for having different nodes and even manufacturers, as Ampere A100 used TSMC N7 while the RTX 30-series chips used Samsung 8N. GTX 10-series Pascal GP107 and GP108 were also made on Samsung’s 14LPP, while GP102, GP104, and GP106 were made on TSMC 16FF.

Next generation GDDR7 memory

GDDR7 chips were shown at GTC 2024 (Image credit: Tom’s Hardware)

It’s long been expected that the consumer and professional (i.e., not strictly data center) Blackwell GPUs will move to GDDR7 memory. All indications from GTC 2024 are that GDDR7 will be ready in time for the next generation of GPUs before the end of the year. In fact, Samsung and SK hynix showed off GDDR7 chips at GTC, and Micron confirmed that GDDR7 is also in production.

The current generation RTX 40-series GPUs use GDDR6X and GDDR6 memory, clocked at anywhere from 17Gbps to 23Gbps. GDDR7 has target speeds of up to 36Gbps, 50% higher than GDDR6X and 80% higher than vanilla GDDR6. SK hynix says it will even have 40Gbps chips, though the exact timeline for when those might be available wasn’t detailed. Regardless, this will provide a much-needed boost to memory bandwidth at all levels.

We don’t know if Nvidia will actually ship cards with memory clocked at 36Gbps. In the past, it used 24Gbps GDDR6X chips but clocked them at 22.4Gbps or 23Gbps — and some 24Gbps Micron chips were apparently down-binned to 21Gbps in the various RTX 4090 graphics cards that we tested. So, Nvidia could take 36Gbps memory but only run it at 32Gbps. That’s still a healthy bump to bandwidth.

At 36Gbps, a 384-bit GDDR7 memory interface can provide 1728 GB/s of bandwidth. That’s 71% higher than what we currently get on the RTX 4090. A 256-bit interface would deliver 1152 GB/s, compared to the 4080 Super’s 736 GB/s — a 57% increase. 192-bit cards would have 864 GB/s, and even 128-bit cards would get up to 576 GB/s of raw bandwidth. Nvidia might even go so far as to create a 96-bit interface with 432 GB/s of bandwidth.

We also expect that Nvidia will keep using a large L2 cache with Blackwell. This will provide even more effective memory bandwidth — every cache hit means a memory access that doesn’t need to happen. With a 50% cache hit rate as an example, that would double the effective memory bandwidth, though note that hit rates vary by game and settings, with higher resolutions in particular reducing the hit rate.

GDDR7 also potentially addresses the issue of memory capacity versus interface width. At GTC, we were told that 16Gb chips (2GB) are in production, but 24Gb (3GB) chips are also coming. The larger chips with non-power-of-two capacity probably won’t be ready until 2025, but those will be more important for lower-tier parts. That’s another point in favor of an early 2025 announcement, incidentally, because it means the top models could come with 50% more VRAM capacity.

Still, there’s no pressing need for consumer graphics cards to have more than 24GB of memory, though we could see a 32GB RTX 5090 (with a 512-bit interface). Even 16GB is generally sufficient for gaming, with a 256-bit interface. Professional GPUs on the other hand are often used for large 3D models as well as AI workloads where having more VRAM would be a major boon. A 512-bit interface with 3GB chips on both sides of the PCB could yield a professional RTX 6000 Blackwell Generation as an example with 96GB of memory.

More importantly, the availability of 24Gb chips means Nvidia (along with AMD and Intel) could put 18GB of VRAM on a 192-bit interface, 12GB on a 128-bit interface, and 9GB on a 96-bit interface, all with the VRAM on one side of the PCB. We could even see 24GB cards with a 256-bit interface, and 36GB on a 384-bit interface — and double that capacity for professional cards. Pricing will certainly be a factor for VRAM capacity, but it’s more likely a case of “when” rather than “if” we’ll see 24Gb GDDR7 memory chips on consumer GPUs.

Blackwell architectural updates

Source link